$$
K D-T r e e s
$$

KD-Tuees
Construction:
Input: $P=\left\{p_{1}, \ldots, p_{n}^{n}\right\} \subseteq \mathbb{R}^{d}$
Loose split axis i (isth cord) $<$ sA. called "discriminator.
find median m of $\left\{p^{1} i, \ldots, p_{i}^{n}\right\}$
partition P into

$$
\begin{aligned}
& P^{-}=\left\{p \in P \mid p_{i} \Theta m\right\} \\
& p^{+}=\left\{p^{\prime} \in P \mid p_{i}(m\}\right.
\end{aligned}
$$

reamion with P^{-}, p^{+} create module \sim :

- painters to $k d$-trees over P^{-}and P^{+}
- median mi and axis's i
- (aptrimally bbex (P))
stop when $|P|=1$

Note: m, i define a plane perpendicular to $i-t h$ cooed axis

Terminology?
Region of node r R $(r) \subseteq \mathbb{R}^{d}$
$R($ root $)=R^{\alpha} ;$ ir puractia, start with blow (P)
Derive $l\left(v_{l}\right)$ from $R(v) \quad\left[v_{l}=\right.$ left elided of $\left.v\right]$ daring travieisal
$R(v)=\left[x_{\text {min }}, x_{\text {max }}, y_{\text {min }}, y_{\text {max }}\right] \leftrightarrow$ split axis $=x, m=$ median $R\left(v_{e}\right)=\left[x_{\text {min }}, m, y \min , y_{\max } J\right.$
$R\left(V_{r}\right)=\left\{\min , X_{\text {max, }} Y_{\text {min }}, y_{\max }\right]$
$B \operatorname{Bcox}(v)=$ beak $(P(v))$, where $P(v)=p t s$ in sidle $R(v)$
(mplaneenting construction: (in 20 for simpliaty)
pre $=$ sort 8 once along $x \rightarrow{ }^{4} x$-list a^{a}
and $\quad y \quad y \rightarrow " y-l i s t{ }^{4}$
introchnce pointers between the lists
Observe :
finding mech $\in O(1)$ memory $\in O(d \cdot m), d=$ dimension splitting $\in O(d / m)$
Naive splitting: $O(n \log n)$

Complexities:
Depth $O(\log n)$
Preprocessing : $O(d \cdot m \log n) \quad, d=d i m$.
Recommence:

$$
\begin{aligned}
& \nabla(n)=2 \cdot T\left(\frac{m}{2}\right)+\underbrace{O(d n)}_{\text {or }} \\
& O(m \log n) \\
& \Rightarrow F(n)=O(d \cdot n \log n) \\
& \text { or }=O\left(d m \log ^{2} n\right)
\end{aligned}
$$

Difference to quad treen:

- stree: size of nodes decreases expronentidly with level
-hd-tre: sire of $P(v) \quad-11$ -

Variants:
0 . Store morion $p^{\bar{r}}$ in node $v \quad\left(p=p^{-}\right.$ip $\left.\cup\{\bar{k}\}\right)$

1. "Miming": stop recmisian when $|P| \leq b, b \approx 20, \ldots 30$
2. Split t plane:
a) trivial: round-vobin
first x axis, then y, z, x, \ldots
b) "largest spread kd-tree" :
choose axis, where box $(P(v))$ has largest extent Probbin with P lying smaller-din manifold,

c) "longest side kd-tree""
choose axis where $R(v)$ las largest extant.
\rightarrow seems best so for in most cases

Application: Nearest-Neighbor Problem (a.k.a. Class Pact Problem
Input : set pAs $P \subseteq \mathbb{R}^{d}$
query $p t \quad q \in \mathbb{R}^{d}$
output: $p^{*} \in P$, sud that $\forall x \in P:\left\|p^{*}-p\right\| \leq\|p-q\|$ τ "nearest neighbor"
$A \lg : N N(v, p, r) \rightarrow p^{\prime}, r$
miput $v=$ node
$p=$ cumsent candidate for p^{*}
$r=\|p-q\|$
cutpment mens carididete μ^{\prime}, r
preconditoon: $B(q, r)$ overlaps $R(r)$
τ "ball wiste radius r, atterq"

if r is leaf:

$p^{\prime}=$ mearst naiglbor of $P(v)$ to q

$$
r^{\prime}=U r^{\prime}-g \|
$$

if $r^{\prime}<r$ then oturn p^{\prime}, r^{\prime}
else: (v not leaf) retirm k, r
if $q_{i} \leqslant m$:

$$
(m, i=\text { splitting plane })
$$

$$
p_{1} r=N N\left(V_{l} / \mu_{1} r\right)
$$

if $B(g, r)$ ovelaps $R\left(v_{p}\right)$:
"bands everlaps ball test"

$$
p / r=N N\left(v_{r}, p, r\right)
$$

else $\left(q_{i}>m\right)$.

$$
p, r=N N\left(v_{r}, p, l\right)
$$

if $D(q / r)$ overlaps $R\left(v_{e}\right)$:

$$
p, r=N N\left(v_{e}, p, r\right)
$$

end if
if $B(q(r) \subseteq R(r)$:
"boll with bands tet"

$$
p^{*}=p
$$

st op recursion
(in proaction: not) necessary
wetum pr
Tint: $N N($ root, NuLL,$\infty)$
Analog: "farthest neighbor"
"implementation " bounds overlaps ball"
i (q / r) overlaps $R \Leftrightarrow$

$$
\begin{aligned}
& d(q, R)<r \\
& d(q, R)=d(q, \hat{q}) \\
& \hat{r}=\left(\hat{q}_{1},-, \hat{p}_{\alpha}\right)
\end{aligned}
$$

where

$$
\left.\hat{r}_{\alpha}\right)=\left\{\begin{array}{l}
R_{j}^{\text {min }}, q_{j}<R_{i}^{\text {min }} \\
q_{j}, R_{i}^{\text {mix }}<q_{j}<R_{j}^{\text {max }} \\
R_{j}^{\text {max }}, \\
q_{j}>R_{j}^{\text {max }}
\end{array}\right.
$$

Test $\in O(d)$

Refining time:
obvious $T(n) \in \Omega(\log n), \quad \sigma(n) \in O(\infty)$ No better bounds for vont-case Under attain assumptions about distrib pts: expected $T(n) \in O(\log n)$

Curse of Dimensionality
Lemma ($\%$ proof):

1. Given set of pts $P \subseteq \mathbb{R}^{d}, \quad|P|=m$.
A hd-tree over P allows for orthogonal vang queries \therefore time $O\left(x^{1-\frac{1}{\alpha}}+k\right), l=$ \#output pts.
Af: orthogonal range query

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{d}, b_{d}\right] .
$$

Find all pts $p \in P$, si $p \in R$.
2. Any alsarith solving orthogonal range queries using a data structure of size O_{n}) minos t have mining time $\in \Omega(n(n-\hat{1}+k)$. In that sene, led-tiees are optimal for orth range opurits.

Another thorgld experiminent,
Considar $N=10^{7}$ pts, minformby distríbuted in cube $\leq \mathbb{R}^{d}$. Patition aibe into "octants"

$$
c=2^{d}=\# \text { octonts }
$$

\& ensty octants $e \geqslant \frac{c-N}{c}$

* expected pts per octant $p=\frac{N}{C}$

$\frac{d}{10}$	12	e
10	$9.8 \cdot 10^{3}$	$\sim 0 \%$
30	0.009	99.1%
160	$8 \cdot 10^{-24}$	$\sim 100 \%$

Consider liyperballs $B_{d} \leq \mathbb{R}^{d}$:
$\operatorname{Val}\left(B_{d}\right)=r^{d} \cdot \frac{\pi^{d / 2}}{(d / 2)!}, d$ even, $r=$ radius
Rominder : let $R \leq V \leq \mathbb{R}^{d}$
distribute et pts $P \subseteq R^{d}$ miiformly, vandomly in V \# expected ots innide $R=\frac{V_{0}(R)}{V_{0}(P)} \cdot|P|$

$$
\frac{v_{0} l\left(I_{d}\right)}{1^{d}}=\frac{\left(r^{2} \pi\right)^{d / 2}}{(d / 2)!}=\frac{(0.78)^{d / 2}}{(d / 2)!} \rightarrow 0
$$

Comsider hyjpercube shell:

$$
V_{a l}(R)=1-\underbrace{1-2 \delta}_{\operatorname{vol}(R)})^{d}
$$

$\operatorname{Prab}\left(\right.$ randon $\left.p^{t} \in R \mid p^{t} \in V\right)$
$=$ Probl (dist pit from sunface of $V \leqslant \delta$)
 choose $\delta=0.1$

d	Prob
3	49%
10	89%
30	99.8%

Nareer comprare $V_{d}\left(B_{d}\right)$ with $\operatorname{Val}\left(I_{d-1}\right)$! Thimik "m" versus "m"

A pproximate Neanest Neigh hors
Def.
Let $P \subseteq \mathbb{R}^{d}$ le set of rts; $q \in \mathbb{R}^{d}=$ "query pt""; $^{\prime}$;
assume $p^{*} \in \mathbb{P}$ is the N; given $\Sigma>0$.
Then, $\mu^{*} \in p$ is called a " $(1+\varepsilon)$-approximate mearest rezzhor $\Leftrightarrow d\left(p^{*}, q\right) \leq(1+q) \cdot d\left(p^{*}, q\right)$.

Assumene, d is a metric, eq, $d(p, q)=\|p-q\|_{2}$
Natation: let $r=$ node, theen

$$
d(q, v)=d(q, R(v))
$$

Algariithim: ANN
$Q=p$-queue witt pointer to nodes r in kd-tree, sorted by $d(q, v)$
$p^{\circ}=$ comment candidate $\left.q, v\right)$
imit $p^{\circ}:=$ "infinite $p t^{4}$ (vars important)
$v:=$ root
$Q:=$ empty
motile $d(q, v)<\frac{1}{1+\varepsilon} d\left(q, p^{\circ}\right)$:
while v is inner node,
eat $v_{1} v_{2}=$ Lildiven of v, assume $d\left(q, v_{n}\right) \leq d\left(q, v_{2}\right)$ insert V_{2} in Q
$v_{:}=v_{1}$
and while
if $d\left(q, p_{v}\right)<d\left(q_{1}, p^{0}\right)$:
$p^{\circ}=p_{v}$
$v:=\operatorname{extract}-\min (Q)$
and while
return p°
Remark: $\varepsilon=0 \Rightarrow p^{0}=p^{*}$

Cove tues:
Let $u^{*}=$ leaf containing $\sim^{*}=N N$
a) Case μ^{*} is visited \Rightarrow alga veturms $p^{\circ}=p^{*}$
b) Case n^{*} is not visited $\Rightarrow p^{0} \neq p^{k}$

$$
\begin{aligned}
& \Rightarrow d\left(q, \tau^{*}\right) \geqslant \frac{1}{1+\varepsilon} d\left(q, \tau^{0}\right)
\end{aligned}
$$

Complexity:
\# outer iterations $=l=$ \# visited leaves
iterations in inner wile $\log p=O(\log n)$
Op's in ouster loop $y 1 \propto$ extraction from p equine $\rightarrow 0(\log u)$
Tx inner loop
op's in inner $\log >1 k$ in sent in quern $\rightarrow 0(\log n)$ time for imine log $\in O\left(\log ^{2} n\right)$
Total time $\in O\left(l \cdot \operatorname{leg}^{2} n\right)$
I m provement: USe Fibonacci heap
$\rightarrow O(\log n)$ for extract on.
$O(1)$ a amortized time for insert of
\Rightarrow total time for $A N N \in O(l \cdot \log n)$
Dist calc $\in O(1) / O(d)$
$E \times$ ampoles
new conolos in Q

Notes:

- In practice: Q remains small \rightarrow rese egular hegs
- Analog : "(1- $)$ - fathes neighbor"
- In dimension d:

Show \# leaves visited $l \in O\left(\log ^{d-1} m\right)$ Approdel to proof find upper bound on \# modes stabbing an anus civoind g

$$
\rightarrow O\left(\left(\frac{\log n}{\varepsilon}\right)^{d-1}\right)^{d}
$$

'Wanks only for "loungest-side hd-tres"!
Theorem:
Let $P \subseteq \mathbb{R}^{d}$ pt set, $|P|=n$, and query pt $p \in \mathbb{R}^{d}$. Then, finding an ANN is possible in time $O\left(d \cdot \frac{\log ^{d} n}{\varepsilon^{d-1}}\right)$.
"Best 4 ANN Algorithoms
Awother guality criterion for ANN algas:

$$
\begin{aligned}
& \text { precision }=\frac{\text { \#exact NN's retumed }}{\text { \# queries }} \\
& \text { "error" }=1 \text {-purecision }
\end{aligned}
$$

Bandsomized bd-tree (RKO)):

- Pick $D \leqslant d$ axes (dim's), l.g., the ones vith lighest variance ainoing P
- Choose one of those randairly
- Split acrass miedian along that axis

PCA-RKD:

- Determine purincipal comprocents of P
- Transform $P \rightarrow P^{\prime}$
- Canstruct RKD over P'
- Traesform $g \rightarrow g^{\prime}$
- continire vith stadod ANN algo

$R K D$ - Forest (potly with PCA):
- Construnt N RKD-Trees over P (or P^{\prime}) each one with different smiset of candidate sphitting axes

ANN search usinig RKD Forest:

- Maintair one p-quene Q
- Init: descand ead RKD-True Lowon to clesest leaf to q
- Choose n of all those leaves losest to g, put others in p-queve
- Proceed with ANN alyo as befave (anly differene: Q paints to varions eld-trees)

K-Means-Tree: warks usonig, clnstering
could raidomize

Raytraaing axing Stadless hd-tree Traversal
Goal: given hd -tree,
Given var;
find all leaves "along" vary
Def.:

1. Direction = $D=\left\{L, R, \sigma, B_{0}, F, B_{a}\right\}$
$=$ "directions"

2. Opposite direction: let $d \in D$, then
$d=$ "opposite";
ex. $d=L \Rightarrow d=R$
3. Rope: let $v=$ rode of $b d$-tree.

Denote by $v \rightarrow d^{d} w$ painter from v to w, and w in in direction d relative to v, save
a) in case r has just one neighbor is direction d : $c=$ that ane neighbor

$w=$ comineon ancestor of w_{1}, \ldots, w_{m}
[d-side of $R(\omega)$ has do contain
 the d-side of $R(v)]$

Example:

Tosk: Litrodice ropes
Approach: purojiagote repes top-deave

Ank algo: replace rope $\sim \rightarrow \omega \operatorname{ly}$ proniters do dildsen of w, if possible
push Dowin (v, ω, d) :
imput: vope $s \stackrel{l}{\rightarrow} w, d=$ dir of repe output : new rope to hild w_{1}
let $c=$ clipping plane of ω
if $c \perp d$:
if $d \in\{R, T, B a\}$:
return ω_{1}
elre:

else: return il c parallel to d
if side of $R\left(w_{n}\right)$ ide of $R(r)$ dir contains
ide of $R(v)$:
reties win
if side of $R\left(w_{2}\right)$ in d contains side of $R(v)$.

return ω_{2}
return w II no further propragathien possible
 propagate Ropes (v):
if v is leaf:
return
for all $d \in D$:
if rope, $v \xrightarrow{d} w$ exists:
repeat:

$$
w^{\prime}=w
$$

$$
\begin{aligned}
& w^{\prime \prime}=\text { push Down }\left(v, v^{\prime}, d\right) \\
& \text { until } w^{\prime \prime}==u^{\prime}
\end{aligned}
$$

Set we w rope $v \xrightarrow{d} v^{\prime}$ for node v
let $c=$ splitting axis of $v, c \in\{X, Y, z\}$

$$
d= \begin{cases}R, & c=x \\ T, & c=Y \\ F, & c=Z\end{cases}
$$

$v_{1}=$ left child, $v_{2}=$ right died
set ropes of v_{1}, v_{2} pasting to v_{1}, v_{1} respectively

$$
v_{1} \xrightarrow{d} v_{2}, v_{2} \xrightarrow{d} v_{1}
$$

cory ropes of v to v_{1}, v_{2} "'outward" pointing ups
Start: set ropes of root to mil propagate opes (root)

Kd-Tree Trarersal insing "voped kd-tra"
$p_{0}=s t a c t$ pt of ray $v=\operatorname{ract}$

$$
\tau=n_{0}
$$

vhile $v \neq$ mil
while N is mot leaf:
if p is left of splitting plane:

$$
v=v_{n}
$$

else?

1 whib ${ }^{2}=12$
find $\mu^{\prime}=$ cosest intensection $p t$ with gean in v If if any if μ^{\prime} exists and $p^{\prime} \in R(v)$.
neturn p!'
fiid "exist vall" af v "exut pit" p
follon voje of v^{\prime} in derection exit wall if rope $v \xrightarrow{d} w$ exibts:
and wile etrir "no sintersection"

Q for yon prove anything for roped hd trees in case a longest side comstridtan

Texture Syn thesin
Problemin 2 Siven inpist tecturve I
Comatmint laiger / different artsunt texture T that looks siniler
Def.: $p_{i}=$ input pixal $\in I$
$p_{0}=$ outprit $\in T$
$N(p)=$ neighborlaod aroul s

Algo:
init T with vandoun boder for all $p_{0} \in T$ in scanlime order: find $\mu_{i} \in I$ sind that

$$
\operatorname{dis} A\left(N\left(p_{0}\right), N\left(p_{i}\right)\right)=\min (*)
$$

$$
p_{0}=\eta_{i}
$$

\rightarrow un $k d$-true
with some metric/similainity

$$
\text { ever } N(p)=\left(\begin{array}{l}
r_{1} \\
y_{1} \\
b_{1} \\
r_{2} \\
\partial_{2} \\
b_{2} \\
1
\end{array}\right)
$$

Solution for "proper" size of $N(x){ }^{2}$ \rightarrow image pyramid

I^{l+1} from I^{l} by anseraginig
each $2 x^{2}$ pixels in (or, Gamp filter + mansanphing)

$$
d=\log (\text { resolution })
$$

Aloe, build ing pyramid $I^{\bullet}, \ldots, I^{d}$
for $i=d-k, \ldots, 0$: $\quad l l=$ pavan
constant T^{l} ort of $I^{l}, I^{l+1}, \cdots, I^{l+k}$
with $N(p), p \in T e^{-1} I, \cdots, I$
stretches over loges $l_{1} l+1, \ldots l+k$

Appl. Shape Matding
Problemi: given databose of contant, eigs iniagese 30 goom 1..
Shape $=2 D$ carre,, SD surface
Appirocch in general?

1. Define, trainsformation: hapee \rightarrow descriptor "Eature vector" ideally: invariant us, v, t vatation \& twanslation \& scaligt \mathbb{R}^{d}
R. Define "dissimilarity measure" d :
fr, fo fature vectors,
$d\left(f_{1}, f_{1}\right)$ big \Rightarrow shapes S_{1}, S_{2} look verg different
2. Database \rightarrow set of feature rector $F \leq \mathbb{R}^{d} \rightarrow$ kd-tree
3. Give query shape $q \rightarrow$ feative vedter $f_{q} \rightarrow(A) N N$ search
\rightarrow content-based infarmathon retrieval or $k-V N$ seanch

Examplez "shape context"
Represect RD shape as gid For ead bladk prixal 12 :
generace 20 listogram
far all other blad pixalso :

$$
\bar{q}=q-p
$$

repuresat \bar{q} in polar cords $(r(\bar{q}), \theta(\bar{q}))$

$$
\operatorname{lom}(\bar{x})=\binom{\left(\log r^{2}\right) \cdot N J}{\theta \cdot N J}
$$

Accumilate all histogramis \rightarrow overall histograms

\downarrow
Properties : immariant w.r.A. trouslation

Dissimilarity measures, \quad \&/ $g \in \mathbb{R}^{d}$
$1 d(f, g)=\|f-g\|_{p}, L_{1}$-marine works al well
2. Kullbad-heibler-Divergance (KL):
compare histograms h_{11}, ha

$$
K\left(l_{1}, h_{2}\right)=\sum_{i \in \operatorname{bim}} l_{2}(i) \cdot \ln \frac{\ln _{2}(i)}{\ln _{1}(i)}
$$

Properties: $K \geqslant 0$

$$
\begin{aligned}
& k=0 \Leftrightarrow h_{1}=h_{2} \\
& k\left(h_{1}, h_{2}\right) \neq k\left(h_{2}, h_{1}\right)
\end{aligned}
$$

Deal with $h_{1}(i)=0 \rightarrow$ ignore than, or penalize $\left(\ln _{2}(i)=0\right.$ ok, becain $\left.\lim _{x \rightarrow 0} k \ln k=0\right)$

Example : 3D shapes
Impunt: meshes in 3D
Define fatiures, "surflet pair listagrains" consider p1/pa vertices with novinals m_{1}, m_{2}
let $\bar{\tau}:=$ nomialize $\left(\mu_{2}-\mu_{1}\right)$
constinct coord syat in r1?

$$
\begin{aligned}
& u=m_{1} \\
& v:=m_{a m a d i d}(\pi \times u) \\
& w=u \times v
\end{aligned}
$$

Describle tur oll to pas?

$$
\begin{aligned}
& \alpha=\arctan 2\left(w \cdot m_{2}, \mu \cdot m_{2}\right) \\
& \gamma=\Varangle\left(v, m_{2}\right) \\
& \gamma=\arctan 2(\bar{r} \cdot u, \bar{r} \cdot 0) \\
& \delta=\Varangle(\bar{\pi}, \omega) \\
& \varepsilon=\|\bar{r}\|
\end{aligned}
$$

Discretize (α, \ldots, c) in h levels $\rightarrow\left[0, k^{5} \in N^{5}\right.$ "feature vector"
for all pairs $\left(x_{1}, \mu_{j}\right) \in$ mesh:
bim in $[0, k]^{5} \rightarrow$ histogram of alapae
Properties: invariant w.r.t. translation, rotation

Example: ICP
Given: two pt sets $A, B \leq \mathbb{R}^{\}}, A=\left\{a_{i}\right\}, B=\left\{b_{i}\right\}$ Assume: perfect match, i.e., R, A exist s. . $^{\prime}$

$$
a_{i}=R \cdot b_{i}+t
$$

Waited $=R, A$
Simple approach: us PCA

To be continued on the slides

